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Bayesian updating and sequential testing: 
overcoming inferential limitations of screening 
tests
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Abstract 

Background:  Bayes’ theorem confers inherent limitations on the accuracy of screening tests as a function of disease 
prevalence. Herein, we establish a mathematical model to determine whether sequential testing with a single test 
overcomes the aforementioned Bayesian limitations and thus improves the reliability of screening tests.

Methods:  We use Bayes’ theorem to derive the positive predictive value equation, and apply the Bayesian updating 
method to obtain the equation for the positive predictive value (PPV) following repeated testing. We likewise derive 
the equation which determines the number of iterations of a positive test needed to obtain a desired positive predic-
tive value, represented graphically by the tablecloth function.

Results:  For a given PPV ( ρ ) approaching k, the number of positive test iterations needed given a prevalence of 
disease ( φ ) is:

ni = limρ→k

⌈

ln

[

ρ(φ−1)
φ(ρ−1)

]

ln

[

a

1−b

]

⌉

(1)

where ni = number of testing iterations necessary to achieve ρ , the desired positive predictive value, ln = the natural 
logarithm, a = sensitivity, b = specificity, φ = disease prevalence/pre-test probability and k = constant.

Conclusions:  Based on the aforementioned derivation, we provide reference tables for the number of test iterations 
needed to obtain a ρ(φ) of 50, 75, 95 and 99% as a function of various levels of sensitivity, specificity and disease 
prevalence/pre-test probability. Clinical validation of these concepts needs to be obtained prior to its widespread 
application.
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Background
Bayes’ theorem
Bayes’ theorem describes the probability of an event, 
based on prior knowledge of conditions that are related 
to the event [1]. As a principle, it follows simply from 
the axioms of conditional probability [2]. Mathemati-
cally speaking, the equation translates to the conditional 
probability of an event A given the presence of an event 

or state B. Indeed, as per Bayes’ theorem, the above rela-
tionship is equal to the probability of event B given event 
A, multiplied by the ratio of independent probabilities 
of event A to event B [2]. Simply stated, the equation is 
written as follows:

where A, B = events, P(A) and P(B) are the independent 
probabilities of A and B, P(A|B) = probability of A given 
B is true and P(B|A) = probability of B given A is true.

(2)P(A|B) =
P(B|A)P(A)

P(B)
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Proof of Bayes’ theorem and its relationship to ρ(φ)
Let us denote to independent events, A and B. The prob-
ability of events A and B both occurring is denoted axi-
omatically as P(A ∩ B) , and it equals to the conditional 
probability of A, P(A), times the probability of B given 
that A has occurred, P(B|A) [3].

Likewise, since we have pre-conditionally established 
that both events are occurring, the index event order is 
commutative and could be switched to obtain:

Equating the terms, we obtain the formal Bayes’ theorem 
as follows [4]:

If we use T +/− as either a positive or negative test, and 
denote D +/− as the presence (+) or absence (−) of dis-
ease then we can use Bayes’ theorem to calculate the pos-
itive predictive value (PPV) of a screening test by asking 
the following: given a positive screening test result, what 
is the probability that such individual does in fact have 
the disease in question? In other words, what is the prob-
ability that a positive test is a true positive? [5].

Since the denominator in Eq. (6) represents the prob-
ability of having a positive test regardless of context, then 
it follows logically that this variable should equal to the 
sum of true positives and false positives.

Otherwise stated:

Furthermore, given that (1) the probability of having a 
positive test in an individual with the disease is a test’s 
sensitivity, and (2) the probability of being disease-free 
is equal to the complement of the prevalence, and (3) 
the false positive rate is equal to the complement of the 
specificity (true negative rate), Bayes’ theorem provides a 
formal way to obtain the PPV, ρ(φ) , as a function of the 
prevalence φ , as follows [6]:

where ρ(φ) = PPV, a = sensitivity, b = specificity and φ = 
prevalence.

(3)P(A ∩ B) = P(A)P(B|A)

(4)P(A ∩ B) = P(B)P(A|B)

(5)P(A|B) =
P(B|A)P(A)

P(B)

(6)P(D + |T+) =
P(T + |D+)P(D+)

P(T+)

(7)P(D + |T+) =
P(T + |D+)P(D+)

P(T + |D+)P(D+)+ P(T + |D−)P(D−)

(8)ρ(φ) =
aφ

aφ + (1− b)(1− φ)
=

aφ

aφ + bφ − b− φ + 1

We have thus shown that the PPV, ρ(φ) , is a function of 
prevalence, φ . As the prevalence increases, the ρ(φ) also 
increases and vice-versa [7]. By the above equation, we 
obtain:

These limits denote the extremes of domain of the func-
tion ρ(φ) , notably [0,0], and [1,1]. Conversely, using the 
same derivation technique, the negative predictive value, 
σ(φ) can be denoted as [6]:

The extreme limits of the domain of this function include 
[0, 1] and [1, 0].

Methods
Sequential testing
Based on the aforementioned considerations, a prob-
lem arises. Since the vast majority of medical conditions 
and disorders amenable to screening have prevalences 
that are low in the general population, we deduce that 
a significant proportion of positive screening tests con-
ducted in modern practice are false positives, which can 
bring about significant adverse administrative, social, 
health and psychological consequences [7]. As such, this 
insurmountable fact about the nature of screening begs 
the question - is there anything to be done to reduce the 
number of incorrect diagnoses that arise given the afore-
mentioned limitation? [8]. Intuitively, as per Eq. (8), the 
development of novel screening tests with better param-
eters would reduce the influence of prevalence in the 
equation [9]. But such endeavour is costly and most often 
unattainable in the short term. Given human error, varia-
tions in patient status/characteristics, sampling error and 
technological limitations, the most intuitive method to 
ensure a correct diagnosis is made on a patient is that of 
sequential, or repetitive, testing [10]. This phenomenon is 
technically known as Bayesian updating [11]. While this 
is a general term that is used when any new information 
is added onto a system which was previously analysed, it 
too applies when the same test is run serially to improve 
its detection rate [12].

Conditional probabilities
Conditional probabilities relate the likelihood of an 
occurrence given that another related event has already 

(9)lim
φ→0

ρ(φ) = 0

(10)lim
φ→1

ρ(φ) = 1

(11)σ(φ) =
b(1− φ)

(1− a)φ + b(1− φ)
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taken place [13]. That initial condition is termed prior 
probability or in certain circumstances the pre-test prob-
ability. When we account for those prior probabilities, 
and analyse a screening test in that context, we obtain 
posterior probabilities. In general, with sequential Bayes-
ian estimation, one can use the previous posterior as 
the current prior probability [14]. As such, in the case 
of sequential testing where D represents the presence 
of disease, T represents one initial positive test and TT 
represents two consequent positive tests, Bayes’ theorem 
takes on the form:

Results
General derivation
The expression of Eq. (2) in generalized terms is the 
following:

where,

•	 P(D) is the prior probability, or the initial degree of 
belief in D

•	 P(¬D ) is the corresponding initial degree of belief in 
’not-D’, where P(¬D ) = 1-P(D)

•	 P(T|D) is the conditional probability or likelihood of 
T given that proposition D is true.

Bayesian updating formulation
Let T1,T2, ...,Tn denote n independently conducted tests.

Then, we can find our expression for P(D|T1,T2, ...,Tn).

It thus follows that as n → ∞ , at some iteration nx the 
above equation converges as a function of P(T|D):

(12)

P(D|T ) =
P(T |D)P(D)

P(T )
⇒ P(D|TT ) =

P(TT |D)P(D)
P(TT )

(13)P(D|T ) =
P(T |D)P(D)

P(T |D)P(D)+ P(T |¬D)P(¬D)

P(T1T2...Tn) = P(T1T2...Tn|D)P(D)+ P(T1T2...Tn|¬D)P(¬D)
= P(T |D)nP(D)+ P(T |¬D)nP(¬D)
= P(T |D)nP(D)+ P(T |¬D)n(1− P(D))

P(D|T1T2...Tn) =
P(T1T2...Tn)|D)P(D)

P(T1T2...Tn)

=
P(T |D)nP(D)

P(T |D)nP(D)+ P(T |¬D)n(1− P(D))

lim
n→∞

P(T |D)nP(D)
P(T |D)nP(D)+ P(T |¬D)n(1− P(D))

=







1 if P(T |D) > 0.5

P(D) if P(T |D) = 0.5

0 if P(T |D) < 0.5

In terms of screening parameters, the above equation 
therefore becomes:

where n is the number of test iterations.
To determine the number of tests needed to obtain a 

desired predictive value, we need to first isolate n by re-
arranging Eq. (14) as follows:

Re-arranging the terms:

Factoring out the sensitivity a:

By the fraction rule of exponents:

Applying the natural logarithm (ln) to both sides:

Via the power rule, we obtain:

From the above relationship, we can isolate n:

(14)ρ(φ) =
anφ

anφ + (1− b)n(1− φ)

(15)ρ(φ)anφ + ρ(φ)(1− b)n(1− φ) = anφ

(16)ρ(φ)anφ − anφ = −ρ(φ)(1− b)n(1− φ)

(17)anφ[ρ(φ)− 1] = −ρ(φ)(1− b)n(1− φ)

(18)
an

(1− b)n
=

−ρ(φ)(1− φ)

φ[ρ(φ)− 1]
=

[

a

1− b

]n

(19)ln

[

−ρ(φ)(1− φ)

φ[ρ(φ)− 1]

]

= ln

[

a

1− b

]n

(20)ln

[

−ρ(φ)(1− φ)

φ[ρ(φ)− 1]

]

= ln

[

a

1− b

]

n

Finally, simplifying the expression:

(21)n =
ln
[

−ρ(φ)(1−φ)
φ[ρ(φ)−1]

]

ln
[

a
1−b

]
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From this expression we can calculate the limit as ρ(φ) 
goes to 1, the ultimate predictive value:

However, the limρ(φ)→1 n does not exist, since ln(φ-1/0) 
is undefined. In clinical terms, this translates to the fact 
that in all but one special case where disease prevalence 
φ is 1, no test can have a perfect positive predictive value.

To overcome this limitation, we render the generalized 
form of the above equation, and we denote ρ(φ) as ρ to 
obtain:

where ρ = desired positive predictive value to achieve, ni 
= number of testing iterations necessary, a = sensitivity, 
b = specificity, φ = disease prevalence and k = constant.

Discussion
Positive likelihood ratio: LR+
From Eq. (24) we observe that the number of serial tests 
n needed to attain a given PPV value is inversely propor-
tional to ln

[

a
1−b

]

 . The latter expression in brackets repre-
sents what is known as the positive likelihood ratio (+LR) 
[15]. A likelihood ratio (LR) for a dichotomous test is 
defined as the likelihood of a test result in patients with 
the disease divided by the likelihood of the test result in 
patients without the disease. Otherwise stated, the posi-
tive likelihood ratio (+LR) gives the change in the odds of 
having a diagnosis in patients with a positive test [16]. 
For example, a LR+ close to 1 means that the test result 
does not change the likelihood of disease or the outcome 
of interest appreciably. The more the likelihood ratio for a 
positive test (LR+) is greater than 1, the more likely the 
disease or outcome [15]. It would thus follow that the 
greater the likelihood ratio of a test the lower number of 
sequential tests needed to achieve a particular PPV.

Properties of sequential testing
Since the natural logarithmic function is continuous and 
increasing throughout its domain (0,∞+ ], it follows that 
as ln

[

a
1−b

]

 increases, the number of test iterations n 
needed to achieve a desired positive predictive value 
decreases as per Eq. (24). Tables  1, 2, 3 and 4 provide 

(22)n =
ln
[

φρ(φ)−ρ(φ)
φρ(φ)−φ

]

ln
[

a
1−b

]

(23)n = lim
ρ(φ)→1

ln
[

φρ(φ)−ρ(φ)
φρ(φ)−φ

]

ln
[

a
1−b

]

(24)ni = lim
k→ρ

ln
[

k(φ−1)
φ(k−1)

]

ln
[

a
1−b

]

different reference values of n as a function of the preva-
lence φ and the sensitivity and specificity for a ρ of 99, 95, 
75 and 50%, respectively. Figure 2 provides a graphic rep-
resentation of the ni , which given its geometric shape we 
define as the tablecloth function. The aforementioned 
relationship holds for a number of identical sequential 
tests that are positive until the ni iteration reaches the 
desired positive predictive value. For severe conditions 
whose treatment is rather innocuous but whose potential 
consequences are severe, a lower threshold to initiate 
treatment might be acceptable. Conversely, a condition 
whose consequences are less severe but whose treatment 
may lead to significant morbidity might benefit from a 
higher degree of diagnostic certainty prior to initiating 
therapy or proceeding to an invasive diagnostic test. 
Given the extremes of the domains of each predictive 
function as per Eqs. (8) and (11), and the fact that most 
conditions have a prevalence well below 20% then it fol-
lows that if prior to reaching the desired positive 
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Fig. 1  Overlapping positive (blue) and negative (red) predictive 
value curves

Fig. 2  ni iteration plot as a function of sensitivity a, specificity b, and 
disease prevalence φ for a positive predictive value of 95%
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predictive value, a negative test result is obtained, the 
individual is more likely to be disease-free, since 
σ(φ) ≫ ρ(φ) at a low prevalence level of disease (Fig. 1). 
In other words, the intersection between the NPV and 
PPV as per the following equation hovers around 40–60% 
prevalence for values of sensitivity and specificity greater 
than 50% (clinically useful ones). Below this point the 
NPV > PPV.

It is critical to bear in mind that testing might be done 
in a representative sample of a population to estimate the 
rate of asymptomatic carriage; in this case the prevalence 
is meaningful. But testing is generally done in subjects in 
whom a condition is suspected, either because they have 
a known exposure or because they have various levels of 
symptomatology. In such cases the population prevalence 
is irrelevant, and it would be more appropriate to refer to 
prior or pre-test probability instead.

Clinical implications of ni
From the formula in (24), we learn that the number of 
iterations is inversely proportional to the ratio of sensitiv-
ity over the complement of the specificity - which repre-
sents the +LR [15].

However, the denominator of this equation is itself the 
natural logarithm of a fraction. It follows that for certain 
values of sensitivity a and specificity b, the ratio of [ a

1−b
] 

is < 1. Since the natural logarithm of x follows the follow-
ing range properties:

We deduce that for values of a and b such that:

the denominator of the ni function will be negative and so 
will thus be ni.

Though it is unlikely that a test whose sensitivity and 
specificity add to less than one would be often used clini-
cally [17], this idea does lead to a fundamental under-
standing about the ni equation. What does it mean to 
have a negative number of tests needed to achieve a given 

(25)φi =
−b2 + b−

√
ab(ab− a+ 1− b)

a2 − b2 − a+ b

(26)ni ∝
1

ln
[

a
1−b

]

(27)ln(x) =











∈ C if x ≤ 0

undefined if x = 0

< 0 if 0 < x < 1

≥ 0 if x ≥ 1

(28)a < 1− b ⇔ a+ b < 1

ρ(φ) ? Clinically it bears no meaning, since one would, 
by definition, need at least a single test to have a positive 
result. It thus follows that for the above equation to be of 
clinical use, we need to take its ceiling function [18], such 
that ⌈x⌉ is the unique integer satisfying ⌈x⌉ - 1 < x < ⌈x⌉:

In practical terms, the ceiling function assigns the near-
est higher positive integer to a number [18]. For the case 
of screening tests, it implies that a whole rather than a 
decimal number of tests (rounded to the nearest, higher, 
positive integer) ought to be performed. In other words, 
the ceiling function in this context serves to suggest that 
when say, 2.8 tests are needed to achieve a desired PPV, 
one is better off doing 3 tests given the discrete nature of 
tests. Doing 3 would by definition guarantee that one is 
above the desired threshold, but doing 2 tests would yield 
a lower PPV than that desired.

Independence of serial testing
From the concepts described in this work, one might eas-
ily suggest that simply repeating the same screening test 
multiple times increases confidence that a positive result 
is a true positive. Setting aside the administrative and 
feasibility concerns, while such an interpretation is theo-
retically correct, the reality ought to be more nuanced, 
as there are confounding factors that might make the 
same result recur upon serial testing on the same patient. 
Indeed, repeating the same test under the same condi-
tions, in a similar time-frame, perhaps even by the same 
interpreter/provider may not constitute a true independ-
ent observation [19]. Likewise, temporally smooth fluc-
tuations in the biological parameters being measured 
imply there should be a temporal separation between 
subsequent tests. Otherwise stated, the final results are 
valid only if the probability of receiving subsequent tests 
is independent of the result of those tests (i.e., we would 
continue testing those with negative tests in addition to 
those with positive tests). As such, the primary use of the 
tables and notions herein described ought to be to con-
textualize the screening result and broaden the clinical 
judgement of the provider with regards to the reliabil-
ity of the screening process. A more natural and reliable 
method to enhance the positive predictive value would 
be, when available, to use a different test with different 
parameters altogether after an initial positive result is 
obtained [19].

(29)ni = lim
k→ρ









ln
�

k(φ−1)
φ(k−1)

�

ln
�

a
1−b

�








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Strengths and limitations
The work hereby presented is largely theoretical in 
nature. As such, it carries several strengths, notably, 
(1) the complete derivation of the resulting equa-
tion and tablecloth function from first principles, (2) 
the use of mathematical language that translates well 
into clinical scenarios (use of limits to ensure attain-
able PPV values and use of the ceiling function to 
achieve a whole number of tests necessary), (3) the 
development of easily accessible reference tables for 
clinicians to use and (4) the novelty of the work pre-
sented—as to the best of our knowledge, the idea of 
sequential testing and Bayesian updating with a sin-
gle screening test has not previously been explored 
to a great extent [20]. Nevertheless, the present work 
has some limitations as well, notably: (1) the lack of 
clinical data to validate results, and (2) the concerns 
regarding its clinical application given the potential 
issues with obtaining independent testing samples. 
Despite these limitations, the purpose of this manu-
script is to raise awareness about the poor predictive 
value of many screening tests given the Bayesian limi-
tations of the screening process and to contextualize 
the way the predictive value can be enhanced with a 
single repeated test, even in theory. Such an equation 
can contextualize the predictive ability of a single test 

- and may provide additional ways to communicate 
risk or likelihood of disease in the clinical counselling 
of patients.

Conclusion
In this manuscript, we describe a mathematical model 
to determine whether sequential testing with a single 
test overcomes the Bayesian limitations of screening 
and thus improves the reliability of screening tests. 
We show that for a desired positive predictive value 
of ρ that approaches k, the number of positive test 
iterations ni is inversely proportional to the natural 
logarithm of the positive likelihood ratio (LR+). This 
clinical utility of this equation would be best observed 
in conditions with low pre-test probability where sin-
gle tests are insufficient to achieve clinically significant 
predictive values and likewise, in clinical scenarios 
with a high pre-test probability where confirmation of 
disease status is critical. When independent observa-
tions are difficult to obtain, serial testing with a differ-
ent test will likewise enhance the positive predictive 
value [19] (Fig. 2).

Addendum: reference tables
See Tables 1, 2, 3 and 4.

Table 1  Reference table for the number of test iterations to obtain a ρ(φ) of 99% as a function of sensitivity a, specificity b and disease 
prevalence φ

To enhance the predictive value and perform a whole number of tests, round up to the nearest integer using the ceiling function ⌈x⌉

ln
(

a

1−b

)

Prevalence (φ)

0.02 0.05 0.07 0.1 0.15 0.2

0.50 16.97 15.08 14.36 13.58 12.66 11.96

1.00 8.49 7.54 7.18 6.79 6.33 5.98

1.50 5.66 5.03 4.79 4.53 4.22 3.99

2.00 4.24 3.77 3.59 3.40 3.16 2.99

2.50 3.39 3.02 2.87 2.72 2.53 2.39

3.00 2.83 2.51 2.39 2.26 2.11 1.99

3.50 2.42 2.15 2.05 1.94 1.81 1.71

4.00 2.12 1.88 1.80 1.70 1.58 1.50

4.50 1.89 1.68 1.60 1.51 1.41 1.33

5.00 1.70 1.51 1.44 1.36 1.27 1.20
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Table 2  Reference table for the number of test iterations to obtain a ρ(φ) of 95% as a function of sensitivity a, specificity b and disease 
prevalence φ

To enhance the predictive value and perform a whole number of tests, round up to the nearest integer using the ceiling function ⌈x⌉

ln
(

a

1−b

)

Prevalence (φ)

0.02 0.05 0.07 0.1 0.15 0.2

0.50 13.67 11.78 11.06 10.28 9.36 8.66

1.00 6.84 5.89 5.53 5.14 4.68 4.33

1.50 4.56 3.93 3.69 3.43 3.12 2.89

2.00 3.42 2.94 2.77 2.57 2.34 2.17

2.50 2.73 2.36 2.21 2.06 1.87 1.73

3.00 2.28 1.96 1.84 1.71 1.56 1.44

3.50 1.95 1.68 1.58 1.47 1.34 1.24

4.00 1.71 1.47 1.38 1.29 1.17 1.08

4.50 1.52 1.31 1.23 1.14 1.04 0.96

5.00 1.37 1.18 1.11 1.03 0.94 0.87

Table 3  Reference table for the number of test iterations to obtain a ρ(φ) of 75% as a function of sensitivity a, specificity b and disease 
prevalence φ

To enhance the predictive value and perform a whole number of tests, round up to the nearest integer using the ceiling function ⌈x⌉

ln
(

a

1−b

)

Prevalence (φ)

0.02 0.05 0.07 0.1 0.15 0.2

0.50 9.98 8.09 7.37 6.59 5.67 4.97

1.00 4.99 4.04 3.69 3.30 2.83 2.48

1.50 3.33 2.70 2.46 2.20 1.89 1.66

2.00 2.50 2.02 1.84 1.65 1.42 1.24

2.50 2.00 1.62 1.47 1.32 1.13 0.99

3.00 1.66 1.35 1.23 1.10 0.94 0.83

3.50 1.43 1.16 1.05 0.94 0.81 0.71

4.00 1.25 1.01 0.92 0.82 0.71 0.62

4.50 1.11 0.90 0.82 0.73 0.63 0.55

5.00 1.00 0.81 0.74 0.66 0.57 0.50

Table 4  Reference table for the number of test iterations to obtain a ρ(φ) of 50% as a function of sensitivity a, specificity b and disease 
prevalence φ

ln
(

a

1−b

)

Prevalence (φ)

0.02 0.05 0.07 0.1 0.15 0.2

0.50 7.78 5.89 5.17 4.39 3.47 2.77

1.00 3.89 2.94 2.59 2.20 1.73 1.39

1.50 2.59 1.96 1.72 1.46 1.16 0.92

2.00 1.95 1.47 1.29 1.10 0.87 0.69

2.50 1.56 1.18 1.03 0.88 0.69 0.55

3.00 1.30 0.98 0.86 0.73 0.58 0.46

3.50 1.11 0.84 0.74 0.63 0.50 0.40

4.00 0.97 0.74 0.65 0.55 0.43 0.35

4.50 0.86 0.65 0.57 0.49 0.39 0.31

5.00 0.78 0.59 0.52 0.44 0.35 0.28
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